Molecular, Cell and Systems Biology

Garret R. Anderson

Sample Profile Graphic
Office: (951) 827-5849
Fax: (951) 827-3087
1115 Biological Sciences Bldg.
Office Hours: , 2pm - 3pm
Email: garret.anderson@ucr.edu

Garret R. Anderson, Ph.D.

Assistant Professor
Ph.D., University of Minnesota
Postdoctoral Scholar, Stanford University


Lab website:  www.andersonlaboratory.org

The remarkable specificity of neuronal wiring in the developing brain is controlled in its final stage by cell adhesion molecules at the synapse that bridges the pre- and postsynaptic neuron.  These cell-adhesion molecules provide the molecular foundation that is necessary for proper circuit assembly patterning and brain function by filling two major requirements.  First, the vast diversity of synaptic cell-adhesion molecular complexes provides for the uniqueness and stability that is required for determining precise synaptic establishment and specification. Secondly, once a neuronal connection is formed, these cell-adhesion complexes are still dynamic and can be readily disassembled and reassembled, allowing for the synaptic remodeling processes that are required for learning and memory to occur in the mature brain. 

My laboratory is currently focused on a group of enigmatic cell-adhesion molecules known as Adhesion G-protein coupled receptors (Adhesion-GPCRs), and the role they play in synaptic assembly and specification processes.  While the GPCR activation mechanisms of Adhesion-GPCR molecules remains a topic of intense interest, neuronal GPCRs that respond to traditional small-molecule neurotransmitters (e.g. glutamate, GABA, acetylcholine, dopamine, serotonin) have historically been a subject of attention as important modulators controlling synaptic strength and excitability.  Thus, Adhesion-GPCRs molecules in principle have the structural capability to potentially serve dual functions at the synapse.  First, by way of their large N-terminal extracellular domain structure which can participate in cell adhesion processes; and secondly, by way of their seven transmembrane C-terminal domain GPCR structure, to potentially activate intracellular signaling pathways coupled to the modulation of synaptic strength.  Our work is focused on characterizing members of the Adhesion-GPCR family for their localization and functionality during brain development, geared towards understanding their role in ultimately determining the synaptic patterning specificity that results in the mature brain.              


  • Anderson, G.R., Maxeiner S., Sando R., Tsetsenis T., Malenka R.C., Südhof T.C.  Postsynaptic adhesion GPCR latrophilin-2 mediates target recognition in entorhinal-hippocampal synapse assembly.  Journal of Cell Biology, 2017.  November 6;216(11).
  • Anderson, G.R., Aoto J., Tabuchi K., Földy C., Covy J., Yee A.X., Wu D., Lee S.J., Chen L., Malenka R.C., Südhof T.C.  β-neurexins control neural circuits by regulating synaptic endocannabinoid signaling.  Cell. 2015.  Jul 30;162(3):593-606.
  • Pak C., Danko T., Zhang Y., Aoto J., Anderson G.R., Maxeiner S., Yi F., Wernig M., Südhof T.C.  Human neuropsychiatric disease modeling using conditional deletion reveals synaptic transmission defects caused by heterozygous mutations in NRXN1.  Cell Stem Cell, 2015.  Sep 3;17(3):316-28.
  • Anderson, G.R., Galfin T., Xu W., Aoto J., Malenka R.C., Südhof T.C.  Candidate autism gene screen identifies critical role for cell-adhesion molecule CASPR2 in dendritic arborization and spine development.  Proceedings of the National Academy of Sciences, 2012.  Oct 30;109(44):18120-5.
  • Roloff, A.M., Anderson, G.R., Martemyanov K.A., Thayer, S.A.  Homer 1a gates the induction mechanism for endocannabinoid-mediated synaptic plasticity.  Journal of Neuroscience, 2010.  Feb 24;30(8):3072-81.
  • Anderson, G.R., Cao Y., Davidson S., Pravetoni M., Truong H.V., Thomas M., Wickman, K., Giesler G.J., Martemyanov K.A.  R7BP complexes with RGS9-2 and RGS7 in the striatum differentially control motor learning and locomotor responses to cocaine.  Neuropsychopharmacology, 2010.  Mar;35(4):1040-50. 
  • Anderson G.R., Lujan R., Martemyanov K.A.  Changes in striatal signaling induce remodeling of RGS complexes containing Gβ5 and R7BP subunits.  Molecular and Cellular Biology, 2009.  Jun 29, (11):3033-44.
  • Anderson G.R., Posokhova E.N., Martemyanov K.A.  The R7 RGS Protein Family: Multi-subunit regulators of neuronal G protein signaling.  Cell Biochemistry and Biophysics, 2009.  54(1-3):33-46.
  • Anderson G.R., Lujan R., Semenov A., Pravetoni M., Posokhova E.N., Song J.H., Uversky V., Chen C.K., Wickman K., Martemyanov K.A.  Expression and localization of RGS9-2/Gβ5/R7BP complex in vivo is set by dynamic control of its constitutive degradation by cellular cysteine proteases.  Journal of Neuroscience, 2007.  Dec 19, 27(51):14117-27.
  • Anderson G.R., Semenov A., Song J.H., Martemyanov K.A.  The membrane anchor R7BP controls the proteolytic stability of the striatal specific RGS protein, RGS9-2.  Journal of Biological Chemistry, 2007.  282(7):4772-81. 


More Information

General Campus Information

University of California, Riverside
900 University Ave.
Riverside, CA 92521
Tel: (951) 827-1012

Career OpportunitiesUCR Libraries
Campus StatusDirections to UCR

Department Information

Molecular, Cell and Systems Biology
2111 Biological Sciences Bldg.

Manuela Martins-Green: Chair of Molecular, Cell and Systems Biology
Tel: (951) 827-2831
Fax: (951) 827-3087
E-mail: manuela.martins@ucr.edu