Molecular, Cell and Systems Biology

Weifeng Gu

Weifeng Gu
Office: (951) 827-3600
Fax: (951) 827-3595
1117 Biological Sciences Bldg.
Office Hours: , 10am - 5pm
Email: weifeng.gu@ucr.edu

Weifeng Gu, Ph.D.

Assistant Professor of Cell Biology & Neuroscience
M.D., Peking University Health Science Center, China 1997
Ph.D., University of Rochester 2005


miRNAs, siRNAs, piRNAs, and capped small RNAs comprise the non-coding small RNA family of 20-30 nts long. The overall number of these RNAs is much more than that of protein coding genes in many organisms including human. Most non-coding small RNAs bind Argonaute proteins to regulate varied biological processes including mRNA translation and stability. These processes are critical for genome stability, anti-viral defense, and development. Mis-regulation of non-coding small RNAs causes developmental defects and various diseases such as cancers, diabetes, etc.

As a relatively new field, many aspects of non-coding small RNA remain poorly understood. We are using C. elegans as a model system, which has proven to be a very convenient and powerful system for small RNA studies. One focus is on the RNAi-mediated antiviral role. Particularly we are interested in dissecting the roles and mechanism of a novel RNA polyphosphase, PIR-1, in RNAi-mediated anti-viral responses in C. elegans and mammalian cells. The other interest focuses on piRNAs (Piwi-interacting RNAs), which bind Piwi Argonaute proteins and play critical roles in silencing transposons, viruses, and non-self transcripts. Currently we are interested in dissecting the piRNA biogenesis process and investigating the functions of piRNAs.

The PI trains students both in molecular biology and bioinformatics.


  • Mansur F, Ivshina M, Gu W, Schaevitz L, Stackpole E, Gujja S, Edwards YJ, Richter JD. (2016). Gld2-catalyzed 3' monoadenylation of miRNAs in the hippocampus has no detectable effect on their stability or on animal behavior. RNA, doi: 10.1261/rna.056937.116
  • Gu W, Gallagher GR, Dai W, Liu P, Li R, Trombly MI, Gammon DB, Mello CC, Wang JP, Finberg RW. (2015). Influenza A virus preferentially snatches noncoding RNA caps. RNA 21(12), 2067-75.
  • Hainer SJ, Gu W, Carone BR, Landry BD, Rando OJ, Mello CC, Fazzio TG. (2015). Suppression of pervasive noncoding transcription in embryonic stem cells by esBAF. Genes Dev. 29(4):362-78.
  • Poole CB, Gu W, Kumar S, Jin J, Davis PJ, Bauche D, McReynolds LA. (2014). Diversity and expression of microRNAs in the filarial parasite, Brugia malayi. PLoS One 9(5), e96498.
  • Shirayama M., Stanney W., Gu W., Seth M., Mello C.C. (2014). The Vasa Homolog RDE-12 Engages Target mRNA and Multiple Argonaute Proteins to Promote RNAi in C. elegans. Curr Biol. 24(8), 845-851.
  • Seth M., Shirayama M., Gu W., Ishidate T., Conte D. Jr., Mello C.C. (2013). The C. elegans CSR-1 argonaute pathway counteracts epigenetic silencing to promote germline gene expression. Dev Cell 27(6), 656-63.
  • Conine C.C., Moresco J.J., Gu W., Shirayama M., Conte D. Jr., Yates J.R. 3rd, Mello C.C. (2013). Argonautes promote male fertility and provide a paternal memory of germline gene expression in C. elegans. Cell 155(7),1532-1544.
  • Gu W., Lee H.C., Chaves D., Youngman E.M., Pazour G.J., Conte D. Jr, and Mello C.C. (2012). CapSeq and CIP-TAP map Pol II start sites and reveal capped-small RNAs as C. elegans piRNA precursors. Cell 151, 1488-1500.
  • D'Ambrogio A., Gu W., Udagawa T., Mello C.C., and Richter J. (2012). Specific miRNA stabilization by Gld2-catalyzed monoadenylation. Cell reporter 2, 1537-1545.
  • Lee H.C., Gu W., Shirayama M., Youngman E.M., Conte D. Jr, and Mello C.C. (2012). C. elegans piRNAs mediate the genome-wide surveillance of germline transcripts. Cell 150, 78-87.
  • Shirayama M., Seth M., Lee H.C., Gu W., Ishidate T., Conte D. Jr, and Mello C.C. (2012). piRNAs initiate an epigenetic memory of nonself RNA in the C. elegans germline. Cell 150, 65-77.
  • Li L., Gu W., Liang C., Liu Q., Mello C.C., and Liu Y. (2012). The translin-TRAX complex (C3PO) is a ribonuclease in tRNA processing. Nat Struct Mol Biol 19, 824-830.
  • Vasale J.J., Gu W., Thivierge C., Batista P.J., Claycomb J.M., Youngman E.M., Duchaine T.F., Mello C.C., and Conte D. Jr. (2010). Sequential rounds of RNA-dependent RNA transcription drive endogenous small-RNA biogenesis in the ERGO-1/Argonaute pathway. PNAS 107, 3582-3587.
  • Conine C.C., Batista P.J., Gu W., Claycomb J.M., Chaves D.A., Shirayama M., and Mello C.C. (2010). Argonautes ALG-3 and ALG-4 are required for spermatogenesis-specific 26G-RNAs and thermotolerant sperm in Caenorhabditis elegans. PNAS 107, 3588-3593.
  • Lee H.C., Li L., Gu W., Xue Z., Crosthwaite S.K., Pertsemlidis A., Lewis Z.A., Freitag M., Selker E.U., Mello C.C., and Liu Y. (2010). Diverse pathways generate microRNA-like RNAs and dicer-independent small interfering RNAs in fungi. Molecular Cell 38, 803-814. (Cover paper)
  • Gu W., Shirayama M., Conte D. Jr, Vasale J.J., Batista P.J., Claycomb J.M., Moresco J.J., Youngman E.M., Keys J., Chen, C.G., Chaves D.A., Duan S.E., Kasschau K.D., Falgren N., Yates J.R. III, Mitani S., Carrington J.C., and Mello C.C. (2009). Distinct Argonaute-mediated 22G-RNA pathways direct genome surveillance in the C. elegans germline. Molecular Cell 36, 231-244.
  • Claycomb J.M., Batista P.J., Pang K., Gu W., Vasale J.J., Chaves D.A., Shirayama M., Mitani S., Conte D. Jr, and Mello C.C. (2009). The Argonaute CSR-1 interacts with 22G-RNAs targeting germline-expressed genes to promote chromosome segregation in C. elegans. Cell 139, 123-134.
  • Batista P.J., Ruby J.G., Claycomb J.M., Chiang R., Fahlgren N., Kasschau K.D., Chaves D.A., Gu W., Vasale J.J., Duan S., Conte D. Jr, Luo S., Schroth G.P., Carrington J.C., Bartel D.P., and Mello C.C. (2008). PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C. elegans. Molecular Cell 31, 67-78.
  • Alexandrov A., Chernyakov I., Gu W., Hiley S.L., Hughes T.R., Grayhack E.J., and Phizicky E.M. (2006). Rapid tRNA decay can result from lack of nonessential modifications. Molecular Cell 21, 87-96.
  • Gu W., Hurto R.L., Hopper A.K., Grayhack E.J., and Phizicky E.M. (2005). Depletion of Saccharomyces cerevisiae tRNA guanylyltransferase Thg1p leads to uncharged tRNA with additional m5C. Molecular & Cellular Biology 25, 8191-8201.
  • Gu W., Jackman J.E., Lohan A.J., Gray M.W., and Phizicky E.M. (2003). tRNAHis maturation: An essential yeast protein catalyzes addition of a guanine nucleotide to the 5' end of tRNA. Genes & Development 17, 2889-2901.
  • Han W., Lou Y., Tang J., Zhang Y., Chen Y., Li Y., Gu W., Huang J., Gui L., Tang Y., Li F., Song Q., Di C., WANG L., Shi Q., Sun R., Xia D., Rui M., Tang J., and Ma D. (2001). Molecular cloning and characterization of chemokine-like factor 1 (CKLF1), a novel human cytokine with unique structure and potential chemotactic activity. Biochemical Journal 357, 127-135.
  • Chen X., Zhu Y., Wang Y., Gu W., and Wang Y. A stretch of extra-sequence in an anti-HBs VH gene is indispensable for the antibody activity. (2000). Chinese Journal of Microbiology and Immunology 20, 346-349.
  • Gu W., Wang Y., and Yin J. (1999). The expression and purification of recombinant mouse Fas ligand in E. coli. Journal of Beijing Medical University 31, 147-151.
  • Rao Y., Gu W., and Ma D. (1999). Modeling for the three dimensional structure of recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF) homodimer fusion protein. Journal of Beijing Medical University 31, 387-390.

More Information

General Campus Information

University of California, Riverside
900 University Ave.
Riverside, CA 92521
Tel: (951) 827-1012

Career OpportunitiesUCR Libraries
Campus StatusDirections to UCR

Department Information

Molecular, Cell and Systems Biology
2111 Biological Sciences Bldg.

Manuela Martins-Green: Chair of Molecular, Cell and Systems Biology
Tel: (951) 827-2831
Fax: (951) 827-3087
E-mail: manuela.martins@ucr.edu